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Evolving networks with distance preferences
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We study evolving networks where new nodes when attached to the network form links with other nodes of
preferred distances. A particular case is where always the shortest distances are selected~‘‘make friends with
the friends of your present friends’’!. We present simulation results for network parameters like the first
eigenvalue of the graph Laplacian~synchronizability!, clustering coefficients, average distances, and degree
distributions for different distance preferences and compare them with the parameter values for random and
scale-free networks. We find that for the shortest distance rule we obtain a power-law degree distribution as in
scale-free networks, while the other parameters are significantly different, especially the clustering coefficient.
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I. INTRODUCTION

Graphs can be considered as substrata of dynamic
works, and so, several types of graph models have been
posed for capturing the properties of specific networks@1–3#.
In particular, evolving networks can be modeled throu
growing graphs, i.e., graphs to which continuously n
nodes ~vertices! and new links~edges! are added. While
regular graphs, i.e., ones where each node has the same
nectivity pattern and where consequently the interactions
local in nature and progress in a slow and orderly fash
from neighbor to neighbor, can exhibit subtle combinator
patterns, for a realistic network model typically a certa
amount of irregularity or randomness is needed. The pro
types here are the random graphs introduced by Erdo¨s and
Rényi where the connections between the nodes are ch
completely randomly@4#. These exhibit quite interestin
properties, but often real networks are not entirely random
this sense, but show some kind of regularity, not directly
their connectivity pattern, but with respect to some oth
variable or order parameter. Such a parameter can be a
tering coefficient, the average or maximal distance betw
nodes in the network~as measured by the minimal number
links separating them!, the distribution of the number o
links between the nodes, the correlation of such proper
between neighboring nodes~i.e., those connected by a link o
distance 1! or the first eigenvalue of the graph Laplacia
which is relevant for synchronization properties through
the network of dynamic activities at the individual nod
@2,5–8#. Models have been proposed that capture some
these aspects. The small world networks introduced by W
and Strogatz@5# are constructed from regular graphs by c
ating additional random links between nodes, with or witho
deleting some of the existing ones. Once a certain numbe
such new links has been introduced in proportion to the nu
ber of regular ones, distances in the graph get dramatic
shortened, and, consequently, activity can spread quite
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idly from a localized source through the entire network. A
other distinct feature of this model is that there is cluster
which is absent in random models. Empirical evidence
available for the occurrence of clustering in real netwo
@9#. Another interesting model is that of a scale free netwo
as introduced by Baraba´si and Albert@2,10#. This is a graph
where new nodes are added and form a fixed number of l
with the existing nodes not completely at random, but with
preference towards those nodes that already have more
nections than others. More precisely, the probability w
which existing nodes receive a link from a new node is p
portional to the number of links it already possesses. T
characteristic feature of the emerging graph here is that
number of nodes with a given number of links does n
decrease exponentially as a function of the latter as for
ample in random graphs, but follows a power law—the re
son why such a graph is called scale free. Such models
provide valuable insights into existing real networks, for e
ample into patterns of social relations or spreading of d
eases in the small world model, or the connection pattern
internet sites or flight connections between airports in
scale-free model.

It is then a natural question whether there exists an
compassing scheme, which on one hand can put these
cific models into a more general perspective, and on
other hand can offer systematic tools for analyzing the
pendencies among the various network features listed ab
Ideally, these features should depend in an analyzable m
ner on certain parameters of the network construction, an
their interdependencies could then be studied in terms
relations between the parameters involved.

We attempt here to take a step in this direction by prop
ing a general scheme for constructing evolving networ
Our model is characterized by a distance preference funct
This function specifies the probability in terms of the d
tance with which an existing node in the network receive
new link from a newly created node that already has form
one random link so as to attach it to the network and
define its distances to the other nodes. The number of li
each node is allowed to make can be either fixed—as in
simulation results below—or also follow some random d
tribution. So, for example, we can stipulate that the shor
distances are always preferred. Thus, a node that is allo

l,
:
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to form a new link does so preferably to another node
distance 2, i.e., to a direct neighbor of a node that it is
ready attached to. This might constitute a useful model
the formation of social relationships~you want to become a
friend of the friends of your present friends as the easies
safest means of forming new relationships!. Conversely, we
might also stipulate that always the most distant nodes
the preferred recipients of new links. Obviously, one th
expects that the resulting network has quite a short ave
distance between any two nodes, as in the small world
scale-free models. In fact, however, our simulations dem
strate that directly selecting distances is not as efficient
reducing the average distance in the network as crea
some highly connected nodes through which many shor
connections can go, as in the scale-free model. More in
estingly perhaps, one may even expect a certain tende
towards the scale-free type when shortest distances are
ferred. Namely, a node that is highly connected then ha
greater chance of receiving a new link than a less well c
nected one, because the former has a greater chance of
a direct neighbor of another node that has received a pr
ous link from a new node that is attaching itself to the n
work. Thus, we see the principle that the rich get rich
which is characteristic for scale-free networks, also at w
here, although in an indirect and somewhat mediated form
conceptual advantage of this construction over the scale-
one might be that here, for each link, we only need to eva
ate local information, namely, check those sites in its vic
ity. More precisely, if we exclusively select sites of distan
2 as recipients of new links, then we only have to list all t
neighbors of the present neighbors of the link forming no
at each step. In contrast to this, for the scale-free model,
complete connectivity pattern of any potential recipient a
where in the network has to be evaluated. In general, in
scheme, whether we give preference to short distance
not, what is crucial for the decision about a new link is n
an absolute property of the candidate as in the scale-
model, but rather its relation, as expressed by the distanc
the link forming node. This may capture a property that
relevant in some applications.

On the other hand, the scheme where short distances
preferred should lead to more pronounced local cluste
effects and larger average distances in the network than
scale-free construction model. In this way, we can check
certain network properties are independent of or at least
strongly related to each other.

Of course, our scheme also includes the possibility tha
distances are equally preferred. This should generate pro
ties similar to a random network, although the constructio
not entirely identical, because for a random graph, all no
are considered equal, whereas here, only those of the s
distance to the node forming links have equal recipient pr
abilities, because the distances need not be evenly distrib
among the nodes.

We could also easily supplement our construction sche
by a rule for the deletion of links and/or nodes according
some criterion to be specified, as a means to stabilize the
of our network. This would allow a comparison of our mod
with other models for evolving networks of given size rang
Here, however, we do not pursue this aspect systematic
03612
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II. NETWORK CONSTRUCTION

We start with a small network havingm0 nodes and then
let it grow according to the following scheme. We fix a num
ber m as the number of connections each new node is
lowed to establish to other nodes existing in the network
principle, this number could also be randomly chosen fr
some distribution instead of being fixed, but, for simplicit
in our simulations, we only work with a fixedm5m0, as this
will probably not dramatically affect the resulting netwo
properties. The crucial part of our scheme is the specifica
of a probability distributionp(d) for the preferred distance
to a node with which a new link is established. So, when
new nodexn comes in, it is first allowed to make one con
nection with a randomly chosen node in the network, in
der to attach it to the network.~We could also change thi
rule and let the first connection prefer well connected rec
ent nodes, as in the scale-free model, but in the present
per, we do not perform numerical simulations for that rul!
This leaves us withm21 further links that it is allowed to
establish. For the formation of any such link, we conside
nodex in the network and select it as the recipient of the n
link with a probability given byp„d(xn ,x)…. Of course, the
formation of any new link changes the distances in the n
work and the creation of further links, until the allotted num
berm of them has been formed fromxn , then is governed by
the new distance pattern. Oncexn is connected according to
this scheme, we create a new nodexn11 and repeat the pro
cedure.

The distance preference functionp(d) encodes all the fea
tures of our construction. An important case is where t
function is in fact deterministic, namely where only nodes
distance 2 fromxn are allowed as link recipients, i.e., th
ones that have the smallest possible distance from it~we are
not allowing multiple links, and so no further link can b
attached to a node at distance 1!. Another deterministic
choice ofp(d) would be to allow only recipients of maxima
distance fromxn . This obviously makes the scheme comp
tationally much more expensive than the exclusive selec
of nodes at distance 2. More generally, we are intereste
distance preference functionsp(d) that are decreasing func
tions ofd, i.e., where short distances are preferred over la
ones, but the latter can still be selected with a positive pr
ability.

In our simulations as described in the Table I, we consi
the cases where the number of links that each new nod
allowed to form ism52,3,4, and 5. We let the network grow
until its size was 30 000 nodes when we evaluated the v
ous parameters. We considered three different versions o
probability for the distances. In model 1, we exclusively s
lected links to nodes of distance 2, i.e., we always form
triangles. In model 2, we let the probability be proportion
to the inverse distance. Thus, there was a~slight! preference
for shorter distances over larger ones. In model 3, in cont
to this, we let the preference function be proportional to
distance itself~scaled with the maximal distance in the ne
work!. Thus, there is a preference for larger over shor
distance. Our comparison models are the growing rand
graph model where allm links are randomly connecte
6-2
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EVOLVING NETWORKS WITH DISTANCE PREFERENCES PHYSICAL REVIEW E66, 036126 ~2002!
~model 4! and the scale-free or real world model~model 5!.
In Table I we give the first eigenvaluel1, the clustering

coefficientC, the mean path lengthL, and the second mo
ment of degreeŝk2&, for differentm values, for models 1 to
5. The discussion below will employ the simulation resu
for m55; as one can see from the table, the results fom
53,4 are qualitatively similar butm52 is slightly different.
The table gives the averages over ten simulations each
standard deviations are quite small.

III. FIRST EIGENVALUE

Spectral properties of small world, scale-free, and rand
graph models have been discussed in@6,7#. The first ~non-
zero! eigenvalue of the graph Laplacian is the crucial para
eter for the synchronization properties of activities at
network sites as systematically investigated in our previ
work @8#; see also@11#. We naturally assume here that th
graphG under consideration is connected, as are the gra
resulting from our constructive scheme. Moreover they

TABLE I. The first eigenvaluel1, the clustering coefficientC,
the mean path lengthL, and the second moment of degrees^k2&, for
models 1–5, for differentm values.

m l1 C L ^k2&

Model 1

2 0.00051 0.245980 9.9977 28.2986
3 0.00089 0.239210 7.2686 72.4940
4 0.00213 0.219250 6.0137 140.6150
5 0.00501 0.201360 5.2833 236.4537

Model 2

2 0.13906 0.001422 7.0212 22.3045
3 0.25099 0.001770 5.6292 48.8695
4 0.32974 0.001981 4.9776 85.6206
5 0.38889 0.002228 4.5795 132.6747

Model 3

2 0.13872 0.000119 7.1207 21.7022
3 0.24933 0.000415 5.7022 47.1782
4 0.32844 0.000681 5.0324 82.4328
5 0.38688 0.000961 4.6203 127.5877

Model 4

2 0.13929 0.000391 7.0690 21.9742
3 0.25053 0.000741 5.6659 47.9818
4 0.32948 0.001011 5.0061 83.8960
5 0.38816 0.001306 4.6017 129.8109

Model 5

2 0.15605 0.000605 5.8862 39.9532
3 0.27093 0.001074 4.8676 90.2483
4 0.35066 0.001482 4.3696 161.7150
5 0.40970 0.001945 4.0593 250.7354
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he

m

-
e
s

hs
e

symmetric because we consider undirected links. We la
the nodes ofG as x1 ,x2 , . . . ,xn , and we letki denote the
connectivity, i.e., the number of neighbors of the nodexi .
The first eigenvalue is then given by

l15 inf

u:G→R,( kiu~xi )50

(
xi;xj

@u~xi !2u~xj !#
2

( kiu~xi !
2

, ~1!

wherexi;xj denotes that they are neighbors. We can n
provide the following heuristic argument, how the creati
of a new link in the network affectsl1, depending on the
distanced(x,y) between the two nodesx,y before the link
between them is formed. Namely, for any functionu as
evaluated for the infimum in Eq.~1!, the new link only cre-
ates an additional summand@u(x)2u(y)#2 in the numerator
while the denominator is left unchanged. As the difference
u between neighbors is minimized for a first eigenfunctio
the expected squared difference@u(x)2u(y)#2 should be an
increasing function of the distance betweenx andy. There-
fore, the value of a typical candidate functionu for the infi-
mum in Eq.~1! should increase as a result of the new link
a manner that is positively correlated with the distan
d(x,y). Thus, if our scheme prefers larger distances, the fi
eigenvalue should get larger than when we select short
tances for new links. Of course, this fits well together w
the fact that on one hand, a largerl1 facilitates synchroni-
zation across the network, and on the other hand, connec
nodes that had a large distance should have the effect
more pronounced decrease of the average distance whic
turn facilitates synchronization as well.

Our simulations~as described in the Table I! yield that the
first eigenvalue for model 1 is 0.005 which is quite close
the value for a regular network. Thus, synchronization
quite difficult in such a network although the average
maximal distance in the network is quite low~as described
below! and the degree distribution of the nodes is quite sim
lar to the scale-free case. In all the other models,l1 is sub-
stantially larger, namely, around 0.39 for models 2–4 a
0.41 for model 5. It might be of some interest that it appe
to be about the same or perhaps even slightly smalle
model 2, where shorter distances are preferred, than in
random model 4, which in turn has a smaller value th
model 3 with the preference for larger distances. Thus,
scale-free model is the most easily synchronizable of
five, not always a desirable property.

IV. CLUSTERING

If our distance preference is for the shortest possible
tance, i.e., 2, then the emerging graph will contain ma
triangles, i.e., triples of nodes of mutual distance 1. As
consequence, we expect that the graph contains highly
nected subclusters.

Also, since the creation of any new link increases the fi
eigenvalue, it has been suggested by Eckmann and M
@12# to employ the number of triangles for defining som
notion of curvature of a graph. This is based on an anal
6-3
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J. JOST AND M. P. JOY PHYSICAL REVIEW E66, 036126 ~2002!
with Riemannian geometry where the so-called Ricci cur
ture yields a lower bound for the eigenvalue of the Lapla
Beltrami operator~the Riemannian version of the Laplacian!.
In other words, the larger the curvature, the higher the
pected value of the first eigenvalue. As our preceding heu
tic analysis of the first eigenvalue of the graph Laplac
shows, however, there is a problem with the analogy betw
the number of triangles and the curvature. Namely, if we a
a link to a given graph, then the expected increase in
eigenvalue is higher, the larger the original distance betw
the two linked nodes was. In other words, when we select
new link so as to form a new triangle, the expected eig
value increase is smallest, or, when trying to pursue the a
ogy with Riemannian geometry, the additional curvature
least.

The clustering coefficientC of the graph is defined a
follows @13#,

C5
33~number of triangles on the graph!

~number of connected triples of vertices!
, ~2!

where a ‘‘triangle’’ is a trio of vertices connected to ea
other and a ‘‘connected triple’’ is a vertex connected to
~unordered! pair of other vertices. For our choicem55, for
a regular network the value forC is 2/3 ~as the number of
links of each node is constrained, not all the neighbors o
given node can be connected among each other, and s
value is smaller than 1 in any case!. In our model 1, the value
0.20 is quite high, as to be expected, whereas in all o
models, it is dramatically smaller. In fact, for model 3 as w
as for the random model 4, it is even smaller than for
scale-free model 5. In particular, the difference between
models 1 and 2 is striking here.

V. DISTANCES

As already explained, the resulting average or maxim
distance in our network should be smaller when large d
tances are preferred for the establishment of new links. H
ever, this is not so easy to support through numerical sim
lations, as in any case, independently of the prefere
function adopted, our networks, like the small world a
scale-free ones, exhibit rather small maximal distances,
around the order of four or five for networks with ten
twenty thousand sites, and so the difference resulting fr
the preference function cannot be very pronounced.

There is one observation that can be made here, howe
Namely, the direct preference for forming links to nodes
largest distance is not as efficient in reducing the averag
maximal distance in the network as the more indirect sche
of preferential attachment to highly connected nodes e
ployed in the Baraba´si-Albert model. This demonstrates th
virtue of the latter model. In fact, the average distanceL
between all possible pairs of nodes is smallest for that mo
namely, 4.06, around 4.6 for models 2–4, and about 5.2
model 1. Not surprisingly, a preference for short connecti
leads to a larger average distance although the effect is b
means as pronounced as one might naively expect. It is
prising, however, thatL is slightly larger for model 3 where
03612
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large distances are preferred than for the random mode
and slightly smaller for model 2 with its preference f
shorter distances.

VI. DEGREE DISTRIBUTION

One of the distinguishing features of the scale-free or r
world model~model 5! is that the distribution of the degree
of the nodes decays like a power law in contrast to the
ponential of, for example, the random graph model. In Fi
1~a!–1~e! we give the plots for degree distributionP(k) for
models 1–5, respectively, withm54. We find that in our
model 1, where exclusively short connections are selec
once a node is anchored in the network, the degree distr
tion likewise follows power laws, at least over most of i
regime.~For m53, we get a power-law distribution only fo
some part of the distribution while the end decays expon
tially.! Thus, our mechanism is capable of producing a n
work that exhibits a power-law distribution of the degre
but that differs from the scale-free model with respect to
number of other distinctive parameters, like first eigenva
and synchronizability, clustering, average distance, etc
particular, this feature is independent of those other featu

Models 2 and 3 show an exponential distribution as in
random model~model 4!. We also find that the distribution o
the neighbor degrees@i.e., the sum of the degrees of all th
neighbors of a given node,P(kk)] also partly follows a
power law in our simulations for models 1 and 5. In Fig.
we plot that for model 1 withm54.

VII. CORRELATIONS

We may ask whether our scheme leads to strong corr
tions between neighboring sites in the network, with reg
to their connectivity. One possible source of such a corre
tion in connectivity could be a correlation in age. Name
older nodes in the network have had more chances t
younger ones of receiving a random connection from a n
node, and so, the connectivity should be positively correla
with the age of a node. However, there is no direct rea
why neighboring nodes should exhibit a pronounced age
relation.

Another line of reasoning can go as follows: Ifx1 is a
neighbor of a sitex2 of connectivity l, then if distance 2 is
selected by our preference function, thenx2 has anl-fold
chance of receiving the second connection that a new n
xn is making, but the chances ofx1 to benefit from this and
receive the third connection thatxn is making is proportional
to 1/l as it is facing the competition of thel 21 other neigh-
bors ofx2. Thus, the factors cancel, and here, we do not
an advantage for a node from being a neighbor of a w
connected node. Of course, this heuristic argument does
take the triangle pattern in the network into account. W
calculated the average of the square of the degrees of
nodes~second moment!, ^k2&. The result is given in the las
column of the table. The value of this parameter is arou
250 for models 1 and 5 while for models 2, 3, and 4 it
almost half of that value.
6-4
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FIG. 1. Degree distributionP(k) for models 1, 2, 3, 4, and 5.
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VIII. COMPARISON WITH OTHER RECENT NETWORK
CONSTRUCTIONS

Dorogovtsevet al. @3,14# introduced a model which is
similar to the special case of our model 1, where each n
03612
w

node forms only two links and triangles are exclusively s
lected. They attach new nodes to the network with links
the two ends of some randomly chosen link already pres
in the network. This scheme depends on the distribution
6-5
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J. JOST AND M. P. JOY PHYSICAL REVIEW E66, 036126 ~2002!
links whereas the model 1 depends on distribution of nod
though in both cases triangles are formed.

Vazquez @15# studied a network where the growth d
pends on the knowledge obtained by ‘‘walking’’ on it. It is
directed graph model unlike our model. New links a
formed with a probabilityp to a neighbor of a randomly
linked node from the new node and this process is rec
sively continued. New nodes are added when there is no
link to form. Beyond a criticalp value it produces scale-fre
network. Here whenp51, neighbors are preferred as in o
model 1 but the process continues recursively to produc
lot more links of longer distances.

Jin et al. @16# introduced a model with fixed number o
vertices where the probability of formation of new links b
tween two nodes depends preferentially on the numbe
mutual neighbors. There is a cutoff on the number of ne
bors possible and a possibility for node removal. This mo
gives graphs with high clustering coefficient but there is
scale-free degree distribution.

Holme and Kim @17# introduced a model that in som
respects is similar to our model 1. They let the first conn
tion of a new node form according to preferential attachm
as in the scale-free model and then introduce subseq
links that either form triangles or constitute once more, pr
erential attachments, according to some random prefere
The resulting network is again scale free. Their main resu
that in a scale-free network, the clustering coefficient c
take different values~according to the strength of the triang
preference!.

Klemm and Eguı´luz @18# consider a growing network
model based on the scale-free paradigm, with the distinc
feature that older nodes become inactive at the same rate
new ones are introduced. This is interpreted as a fi
memory effect, in the sense that older contributions tend
be forgotten when they are not frequently enough employ
This results in networks that are even more highly cluste
than regular ones.

Davidsenet al. @19# consider a network that rewires itse
through triangle formation. Nodes together with all the

FIG. 2. Neighbor degree distributionP(kk) for model 1.
03612
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links are randomly removed and replaced by new ones w
one random link. The resulting network again is highly clu
tered, has small average distance, and can be tuned towa
scale-free behavior.

IX. CONCLUSION AND DISCUSSION

We have introduced a model for evolving networks whe
each new node, once it is~randomly! anchored to the net
work, forms further links according to some distance pref
ence function, and we have compared simulation results
the evolved networks with those for two main types pre
ously considered, namely the random graph model and
scale-free or real world model of Baraba´si and Albert. We
found that when always the shortest possible distances
selected for the recipients of new links, we get a highly clu
tered network which is difficult to synchronize, although
still has a relatively small average distance between node
also exhibits a power-law-type behavior for the distributi
of the degrees of the nodes comparable to the scale-
model, although the underlying network forming mechani
is different, and, in particular, there is no explicit preferen
for highly connected nodes which is considered as the m
reason for the power-law behavior in the scale-free mode

It has been shown that linear preferential attachment
necessary condition for a growing power-law network@20#.
To check this in our model, we calculated the attachment
P(k) as a function of the degreek. To calculate this we used
the method described in@21#. The attachment rate is numer
cally fitted with a power law ink and we obtained the powe
equal to 1.0 for models 1~for m55) and 5, and 0.0 for
models 2, 3, and 4.~In model 1 for smaller values ofm, this
exponent is less than 1.! This indicates that there is prefe
ential linear attachment in our model 1 as in the case
Barabási-Albert model though we do not explicitly introduc
that in our model. Surprisingly for model 2, though it
similar to model 1, the attachment rate is independent of
degree as indicated by the zero exponent ofk. This explains
why the degree distribution is similar to that of a rando
one. Even the small probability of attaching to second- a
higher-order neighbors in model 2 produces deviation fr
linear preferential attachment rate. The number of seco
and higher-order neighbors are not linearly proportional
the number of first neighbors of a vertex in these models

As the other network parameters are different from
scale-free model, this shows that this feature is independ
of clustering or synchronizability properties. For other d
tance preference functions, we found network parame
that were roughly comparable with these for a random gr
network, and in fact were regardless of whether our pre
ence was proportional or inversely proportional to the d
tance between the link forming node and the potential rec
ent.
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